[05-04 22:22:19] 来源:http://www.592dz.com 电子制作 阅读:9157次
概要:为n,系统总的结构如图(1)所示。具体设计芯片及功能模块介绍TLV320AIC23(简称AIC23)是一个高性能的多媒体数字语音编解码器,它的内部ADC和DAC转换模块带有完整的数字滤波器。内部有11个16位寄存器,控制接口具有SPI和I2C工作方式。数据传输宽度可以是16位,20位,24位和32位,采样频率范围支持从8kHz到96kHz。在ADC采集达到96kHz时噪音为90-dBA,能够高保真的保存音频信号。在DAC转换达到96kHz时噪音为100-dBA,能够高品质的数字回放音频。图1 总体设计框图TMS320C6713是TI公司生产的一种高速数字信号处理器(DSP),他采用先进的超长指令字(VLIW)结构,每时钟周期可以执行8条32b指令,最高时钟频率可以达到300MHz,指令周期最小3.3ns。该芯片具有丰富的片内存储器资源和多种片上外设,外部总的存储器地址空间最大512MB,数据宽度为32b,可以支持SBRAM,SDRAM,SRAM,FALSH和EPROM。TMS320C6713中有两个多通道缓冲串口(McBSP),可以方便地利用这两个McBSP完成对AIC23的控制和通信。硬件连接TMS320C6713与TLV320AIC23的连接TMS320C6713的两个多通道缓冲
TMS320C6713DSP在音乐喷泉控制系统中的应用,http://www.592dz.com引言
音乐喷泉是现代科技与艺术的综合,利用喷泉来表现音乐的美,令人赏心悦目。目前许多单位均推出了自己的音乐喷泉,取得了良好的效果。但纵观这些音控产品,有的利用音乐的时域变化来控制喷泉,有的将音乐分成几个频段来控制喷泉的花型,且多采用低频、中频和高频三个频段来控制。缺点是都没有在频域上很好地展现音乐,因此不能很好地体现音乐的内涵。本设计针对这些问题,提出了一种新的方法来控制喷泉的变化,通过喷泉水柱的喷射高低来实时地展现音乐的频谱。
总体设计
首先对音频信号进行放大、滤波、采样和A/D转换等预处理,经过DSP对音频信号进行傅立叶变换,可以得到音频信号的频谱,即各频率对应声音信号的强度,通过变频控制系统就可以将频谱图用喷泉的水柱表现出来,水柱的高低按线性比例反映音频信号的幅度。设每次对音频信号的采样个数为n,系统总的结构如图(1)所示。
具体设计
芯片及功能模块介绍
TLV320AIC23(简称AIC23)是一个高性能的多媒体数字语音编解码器,它的内部ADC和DAC转换模块带有完整的数字滤波器。内部有11个16位寄存器,控制接口具有SPI和I2C工作方式。数据传输宽度可以是16位,20位,24位和32位,采样频率范围支持从8kHz到96kHz。在ADC采集达到96kHz时噪音为90-dBA,能够高保真的保存音频信号。在DAC转换达到96kHz时噪音为100-dBA,能够高品质的数字回放音频。
图1 总体设计框图
TMS320C6713是TI公司生产的一种高速数字信号处理器(DSP),他采用先进的超长指令字(VLIW)结构,每时钟周期可以执行8条32b指令,最高时钟频率可以达到300MHz,指令周期最小3.3ns。该芯片具有丰富的片内存储器资源和多种片上外设,外部总的存储器地址空间最大512MB,数据宽度为32b,可以支持SBRAM,SDRAM,SRAM,FALSH和EPROM。
TMS320C6713中有两个多通道缓冲串口(McBSP),可以方便地利用这两个McBSP完成对AIC23的控制和通信。
硬件连接
TMS320C6713与TLV320AIC23的连接
TMS320C6713的两个多通道缓冲串口分别配置成I2C模式和SPI模式McBSP0作为数据的发送端口,McBSP1作为控制端口,对AIC23写控制字TMS320C6713与AIC23的硬件连接图如图2所示。
当采用大小为8位时,那么声音的最大和最小的幅度比为256,则:20log(256)=48dB,当采用大小为16位时,那么声音的最大和最小的幅度比为65536,则:20log(65536)=96dB此时最大声强已经接近于人耳的极限。本设计中样本大小选用16位。
3)数据采集的实现
程序设计步骤如下:
a)初始化多通道缓冲串口0和1。
对多通道缓冲串口的初始化是通过配置其寄存器来完成的。串口0配置成方式,串口0各寄存器配置如下:串口配置控制寄存器SPCR=0xC30003;接口控制寄存器PCR=0x03;接收控制寄存器RCR=0x0140;发送控制寄存器XCR=0x0140。串口1配置成SPI方式,串口1各寄存器配置如下:串口配置控制寄存器SPCR=0xC51000;接口控制寄存器PCR=0xa0a;接收控制寄存器RCR=0;发送控制寄存器XCR=0x10040。
b)配置TLV320AIC23
AIC23内部有11个16位寄存器,这16位控制字中,B[15—9]为寄存器的地址,B[8—0]为要写入寄存器的数据。对本设计写入这11个寄存器的数值如下:左声道输入控制=0x17;右声道输入控制=0x17;左耳机通道控制=0x7f;右耳机通道控制=0x7f;模拟音频通道控制=0x1c;数字音频通道控制=0x1;启动控制=0;数字音频格式=0x4f;样本速率控制=0x3f;数字界面激活=0x01;初始化寄存器=0。
c)启动转换,进行A/D转换,将转换后的数据存储在DSP的内部存储器中,每次采用128点。
实例
图5为在DSP的软件环境CCS2.0下仿真输出的音频信号频谱波形,图6为音频信号的时域波形。每次采样数为128,采样频率设为44.1kHz,样本大小为16位。
图5 音频信号频谱图
图6 音频信号时域波形
结束语
本文给出了一种新的音乐喷泉的设计方案,提出了通过喷泉水柱的高低变化来展现音乐信号的频谱的方法,利用DSP和音频编解码芯片在音频信号处理中的优点,将二者很好地应用于音乐喷泉系统中。详细地阐述了TMS320C6713与音频codecAIC23接口的软件编程与硬件系统设计。这一方案在Code Composer Studio(CCS2.0)环境下运行仿真器进行软件硬件联合调试时取得了较好的效果,证实了设计的成功和方案的可用性。本方案不仅可以作为音乐喷泉的前端控制系统设计,如果加上一个LCD显示和一些控制电路,还可以作为便携式音频信号频谱分析仪的模型。
变频控制系统设计
变频控制系统是由变频控制器、变频分配器和变频器构成。对于8路以下的控制系统变频控制系统可采用图3所示的控制方法。